
So, we have seen earlier that if we just look blindly at every position and try to scan the 

word starting that position, we get something which is an order m, n square. now, this 

solution when require as to fill in the table of size m time n, so obviously, every entries 

in the m times n table, we just have to look at a neighbors to fill it up. So, it is a constant 

time operation. So, m times n entries, we fill it m times n times. So, we have an order n 

1, m n. If use dynamic programming, we have done it, but if use memoization also, you 

will get the same answer, all though remember, there is a recursive calls might cost you 

and terms of actual implementation time. 

(Refer Slide Time: 13:04) 

 

So, we can now look at a slightly more general problem than longest common subword 

in one which is more interesting computationally. So, what if we do not look for an exact 

match, but we allow a self should drop some letters. So, we have a subsequence not a sub 

word, it is allows us to drop some letters and now, if you want to know, after dropping 

some letters, what is the longest match we can find. 

So, now, our earlier example, some of them are the same, like in this case without 

dropping any letter I can could get 6, I cannot improve it, same we will bisect, I cannot 

improve it. But, now if I look at bisect and secret, earlier we only had a length 3 match 

sec, sec, but now I can extend match the length 4, because here if we add it t, here I can 

drop two letters and get it t. So, I can actually get a match which is length 4, likewise in 

these two director and secretary, earlier we had re, re and we had ec, ec. 

621



But, now by doing this topic I can get ectr, like get ectr, similarly I can get retr, I can get 

retr. So, if we allow a self’s to drop letter as we can get longer sequences that match and 

this is called longest common subsequence. 

(Refer Slide Time: 14:32) 

 

So, one we have thinking about it in terms of our earlier longest common subword is that 

I can now, if I match the certain segment, I can continue to match to the right. So, I can 

let both the indices go forward. So, I can go down and right in the grid and look for in 

other place where there is a match. So, earlier we had a three level match between a sec, 

and then we add a one level match between d. So, I can combine these two like a four 

level longest common subsequence, but we will do the subsequence calculation in a 

much more direct way there itself. 

622



(Refer Slide Time: 15:04) 

 

So, before we proceed it useful to look at why the longest common subsequence problem 

is interesting. So, one of the area is an bio informatics. So, biologist are interested in 

identifying, how close two species are each other in the genetic sense. So, if we look at 

are DNA, our DNA is basically a long string over an alphabet of size 4. So, these are 4 

proteins, it form a DNA, the abbreviated are A, T, G, C. So, now, if we look at two 

strings of DNA and natural way to compare, how close they are each other is to ask how 

much, how well they aligned features drop of few things here and there. 

So, it could be one species other few extra genes and other species as a few extra gene 

something else and if drop those genes, then everything else the same, but these genes 

may occur, it different places in two species. So, it is not that there is a common part, and 

then there is an extra part, it rather than the new genes are interspersed among the other 

genes. 

So, we need to know, if we can drop of few genes in one and few genes in another can be 

over lap. So, that is the longest common subsequence problem, if you use UNIX or 

LINUX are any related operating system, there is a command code DIFF, which allows 

you to check with the two text files are the same or find the minimal difference between 

them. 

So, the DIFF command also does longest common subsequence, it reach each line as a 

character and it says, what is the minimum number of lines, I can drop between these 

623



two files, 4 I can match them, and then it tells you how to insert things back. But, 

basically it is doing the longest common subsequence calculation to tell you, how close 

two text files are to each other. So, there are plenty of applications for this longest 

common subsequence problem. 

(Refer Slide Time: 16:52) 

 

 So, let us try understanding inductive structure of this longest common subsequence 

problem directly, not throw the longest common subword. So, the first thing to note is 

that if I am looking for this longest common subword between these two, supposing I 

find that a 0, in fact equal to b 0. Now, I claim that, I should combine them in the 

solution, and then look for a solution in the rest. 

So, I should do something, where I say that there is one match a 0 equal to b 0, and then I 

must find the list. So, this requires a little of bit of an argument, because it could be that 

this is not the optimum. So, remember this is the bit like a greedy thing; we are saying 

that, because a 0 equal to b 0 match it up, and then proceed. 

624



(Refer Slide Time: 17:44) 

 

So, one might argue that, this is not the way, I want to go, supposing a 0, in fact, should 

be match to b 2, that would be the best solution. So, it is not good idea match a 0 to be b 

0, but now notice that if a 0 is match to b 2, because it is the subsequence, then anything 

to the write, say a 1 is match to something it must be further to the right, these lines, I 

cannot have anything which process like this, I cannot any match with process. 

Because, they must occur in the same sequence, so if a 0 match to b 2, a 1 something 

match into the right, a 2 must match something still for the right and so on. So, all these 

matches go from bottom from the top word to the bottom word without processing each 

other. So, now, if I take this solution and I know the a 0 and b 0, then I can actually move 

this arrow here and make match like this and remove this, what will this do, it disturb the 

original solution by no long using a 0 match a b 2, but, a 0 match to b 0. 

But, in terms of the quality of the solution, the number of matches this same, earlier a 0 

matches somewhere else, now it match to b 0, the length of the longest common 

subsequence does not change. So, turning the arguments backward, it says that therefore 

if a 0 equal to b 0, it is very safe to assume that a 0, b 0 forms part the solution and 

proceed to the rest of the problem. So, we can look at the subproblem from a 1 and b 1. 

So, this is the first case, the first case says, that we can look at if a 0 equal to b 0, we can 

look at this subproblem a 1 to b 1. 

625



(Refer Slide Time: 19:15) 

 

Now, if it is not equal, then one is not sure what you do, it is not s sound idea a to drop 

both. So, for instant supposing I have something like straw and astray, then just because 

the S does not match the a, does not mean that I should in both of them, I should keep 

that S alive to match with next S. So, both cannot be there, because they do not be each 

other and S match it something on the right and a cannot match as something for it. 

If they are both different, if they are not equal, then this must match something there and 

this must match something here and both cannot happen. because, they will cross, this 

we said not allowed, so only one of them can match something to the right on the other 

word, but we do not know which one. So, this is what the general principle of these 

inductive solutions is that you do not write to choose one or the other. 

So, if I leave b 0 and I drop a 0, then I get a solution, I get a subproblem which has a 1 to 

a m and b 0 to b m. If on the other hand, I keep a 0 and a drop b 0, then a 0 to a m 

remains, but knows b 1 to b n, these are my two possible subproblems knowing that both 

a 0 and b 0 cannot be there. But, I should allow one of them to be there, otherwise I made 

how sub optimize solution. 

So, dropping one of them, it is like in a job schedule case, for you say that, if this job 

with this something else is not there, if a 0 is there, b 0 is not there, b 0 is there, a 0 is not 

there, but beyond that you cannot say. So, therefore, I solve both of these problems in 

principle and take them maximum, the better of them. 

626



So, this is the inductive structure, either the first letter matches which case I include, it 

my sequences and solve the remaining subproblem. Or, the first letter does not match in 

which case is generate two subproblems, one by propping each of the letters in term and 

I take the maximum of the true. 

(Refer Slide Time: 21:18) 

 

So, as usual let LCS i comma j, stand for the LCS of the problem starting at a i and b j. 

So, if a i equal b j as we say, LCS of i j is 1 plus LCS of i plus 1 j plus 1, this says, we 

will assume that a i equal to b j is included not solution. And then proceed with the rest 

of the input, if it is not, then I have to drop one of them. So, either I will look at LCS i 

plus 1 comma j for LCS i j plus 1, I will look at both and then I take the maximum of 

these two and there is no other thing, because the current would not does not match. 

So, as with the longest common subword problem, we will extend that position is to 

beyond the word to indicate the word is over. So, we will go from 0 to m plus 1 and 0 to 

n plus 1 and when, we have least m plus 1 or n plus 1, then the LCS problem will give a 

0, because they cannot be a common subsequence, since one of the words going to be 

empty. 

627



(Refer Slide Time: 22:19) 

 

So, the subproblem dependency in LCS is a little more complicated than in LCW, LCW 

we only had these dependency, that is we said that, i j depended i plus 1 j plus 1. But, 

now we are also dependency i plus 1 j and i j plus 1. So, we have a dependency coming 

to the right and from the low as well. So, we have a three way dependency as we saw all 

these values are going to be 0 here. So, this is the first non trivial value that we can 

compute, because all it see neighbors are nowhere else are around. 

So, if I look at here for example, the bottom neighbors not, if I look here the neighbors 

not. So, LCS m comma n, 5 comma 5 in this case, the value is available to compute, 

because everything around it the three dependence squares around it are all populate. So, 

I can do that and then I can again I do row by row. Once I got this, I can do this, I will 

have all three values, once I do this, I can go or I can go left, I can do this and so on, I 

can do diagonally, so let us do it column by column. 

So, we start with the base case, where the LCS at the boundary 0, because you cannot 

have a longest common subsequence with an empty word. Then, we fill up the first 

column and here we get a 1, because when the two match, we have 1 plus cso, i plus 1, j 

plus 1. Now, we have from differences, so when it does not match like when c, so if I 

look at c that e they do not match, then what I am suppose to do, I am suppose to take the 

maximum of these two. 

628



So, this is the maximum of these 2, I get to 1, now since I take the maximum of these 2, I 

get to 1, maximum of these 2, I get to 1 and so on. So, the longest common subword 

problem, it say if the current let it does not match, then I get a 0, here is not there, 

because I am allow to drop this set and go head. So, therefore, this one proper get along 

this one. 

Similarly, the one property to get this along the previous column, because nothing is an r. 

now, some get an additions, when I reach c and c, it is 1 plus i plus 1 j plus 1. So, we get 

it 2. Likewise, when I go to the next column, when I reach e and e, it is 1 plus i plus 1 j 

plus 1, so I get the 3. And finally, when I reach this S and S, I get this 4 and now, this 4 

propagate, because here I take the max of these 2. 

So, I get this 4 max of these 2, I get 4. So, in this particular case actually LCS of 0 

comma 0 is my answer, remember in LCW add look around the in the whole grid to find 

out, we are the maximum was in LCS, you do not want to do that. The value you get 0 

comma 0 is acts with answer you are looking for... 

(Refer Slide Time: 25:07) 

 

And now as before you can trace back the path, why was each value filled, was it filled, 

because it to 1 plus i plus 1, j plus 1 or it goes to fill, because max with other two 

networks, if so which was the match. So, which was very clear this 4 came, because it 

was a max, because S is not equal to b. So, it came from below and this 4 also came from 

below S is equal to S. 

629



So, this is came from here and so on, so you can trace out this value and everywhere 

where you have this diagonal, it was there, because the value is matched. So, there are 

value is 4 and there is exactly four diagonal steps, this one, this one, this one. And then 

one of the bottom, these are the four matches which constitute the longest common 

subsequence and you can read it of that the thing and this is forms the sequence sect. 

So, as we say before provided you can compute the answer numerically, you can go back 

and retrace that computation and figure out the witness and it is called and which word 

actually which subsequence actually gives has to be sanction. 

(Refer Slide Time: 26:07) 

 

So, the code for the LCS is little bit simpler then for LCW, because we do not have to 

keep track of these maximum value and varied occurs, because we only need to find the 

value at 0 c. So, as before we use r and c to be little clearer that rows go this way and 

columns go this way. So, column is go from 0 to n plus 1 and rows go from 0 to m plus 

1. 

So, we initialize the boundary to be 0, and then we do column by column row by row 

from bottom to top, if the two are equal, then you add 1 plus the value of bottom. If the 

two are not equal, I take the maximum of these two values and finally, when this where 

is are filled out, I written the value, it is 0 comma 0. 

630



(Refer Slide Time: 26:53) 

 

So, this is similar to LCW, we basically fill out in m, n size table each entry in the table 

is easy to compute takes only constant among look at the three neighbors. And therefore, 

overall using dynamic programming, we have demonstrated an order m n algorithm, we 

can also use memoization at the cost of recursion. 

631


	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56



